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Isobaric molecular dynamics simulations of hard sphere systems

T. Gruhn and P. A. Monson
Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003

~Received 18 January 2001; published 23 May 2001!

We describe an implementation of the Andersen algorithm for simulating the molecular dynamics in the
isobaric isoenthalpic (NPH) ensemble for the hard sphere potential. The work is based on the adaptation of the
Andersen algorithm to hard spheres by de Smedtet al. For a hard sphere system in theNPH ensemble, the
particle velocities are not constant between collisions and we describe an efficient method for handling this part
of the dynamics. The method is extended to give anNPT ensemble simulation of hard sphere systems by
applying anad hocrescaling of the velocities. The accuracy of the algorithms is tested by comparison with
traditionalNVE simulation results for the structural, thermodynamic, and transport properties.
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I. INTRODUCTION

Molecular dynamics~MD! simulations of hard spher
systems were first performed in the 1950s@1#, and since then
extensive simulation studies of this model have been p
formed, most notably by Alder and co-workers@2–5#. These
simulations have revealed many useful insights into the m
lecular basis of thermodynamic and transport phenome
Dynamics in hard sphere systems continues to interes
searchers, with recent attention directed to dense pac
metastable fluid states and crystallization processes@6–8#.

While being among the simplest interaction potenti
conceivable, the hard sphere potential provides a good
proximation to phenomena in a large number of real mat
als. The comparison between hard sphere properties
those of systems with attractive as well as repulsive for
shows which effects are already brought about by repuls
interactions alone. This is especially the case for dense
tems where the repulsive part of the interaction potential
a strong influence on the configurational properties and
namics. Hard sphere system analysis revealed strong
dence for the existence of a first-order transition from
ordered to a disordered phase simply from short-range re
sions@9–12#.

In recent work, dispersions of polymer coated colloid
particles have been investigated in which the behavior is
tremely similar to that of hard sphere systems@13–17#. Such
systems are not only exciting model systems for the anal
of crystallization processes, they are also of technolog
interest, for example for the production of photonic cryst
@18#. The colloidal dispersions reproduce the hard sph
equation of state and exhibit a pressure-induced restructu
towards face-centered-cubic~fcc! order. Experimental inves
tigations of these systems with their larger number of p
ticles and the longer observation times are an ideal com
ment to the simulation studies, which for their part allow
more detailed structure analysis. Comparison of the two
fruitful way to develop new insights in hard sphere syst
behavior.

Molecular dynamics simulations at constant pressure h
become a standard method for the computational invest
tion of soft potential model systems@19,20#. One possible
constant pressure scenario is theNPH ensemble, in which a
1063-651X/2001/63~6!/061106~9!/$20.00 63 0611
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system ofN molecules in a fluctuating volumeV is exposed
to a constant pressureP at a constant enthalpyH. Corre-
spondingNPH ensemble simulations for soft potentials a
typically based on a method originally introduced by Ande
sen@21#. MD simulation techniques for hard sphere syste
are computationally different from those for continuo
model potentials because of the nature of the hard sp
collisions. While for soft molecules the numerical integrati
of the trajectory is typically performed by time steps of pr
determined length, the propagation of hard sphere sys
simulations is event driven by the subsequential sphere
lisions. For hard systems without external fields in theNVE
ensemble, Newton’s equations of motion can be integra
without truncation error because the collision dynamics c
be evaluated analytically and the motion between collisio
is force-free. Over the years, some efficiency improveme
of the hard sphere MD method have been proposed@23,24#,
but generally it always consists of three fundamental ste
estimation of collision times, propagation of the system
wards the next collision event, and calculation of the co
sion’s impact on the system. If hard sphere simulations
carried out in theNPH ensemble, the system’s volume
considered as an additional dynamical variable and all th
simulation steps must be reconsidered.

In 1986, de Smedtet al. @22# presented the analysis ne
essary to implement the Andersen algorithm for hard sph
systems inn dimensions together with some illustrative ca
culations for the one-dimensional case. However, to the b
of our knowledge no implementation of their analysis f
three-dimensional hard sphere systems has been reporte
to now. Isobaric molecular dynamics is a potentially use
approach to studying the dynamics of hard sphere cryst
zation, so an implementation is of significant interest. In
present paper, the necessary steps for an efficient implem
tation in three dimensions are presented together with il
trative calculations. The accuracy of hard sphereNPH simu-
lations is checked by comparison with results fromNVE
simulations. We also study the accuracy of simulations
which a simple velocity scaling is added to the algorithm
enable isothermal, isobaric (NPT), hard sphere simulations
In Sec. II, the derivation of the equations of motion for t
hard sphereNPH ensemble is given. Section III is dedicate
to implementation details, while tests of the algorithm a
©2001 The American Physical Society06-1
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reported in Sec. IV. In Sec. V, our conclusions are presen

II. EQUATIONS OF MOTION FOR HARD SPHERES
IN THE NPH ENSEMBLE

A. Molecular dynamics in the NPH ensemble

In theNPH ensemble, a system ofN molecules in a fluc-
tuating volume,V, is exposed to a constant external press
PE at a constant enthalpyH5U1PEV, whereU is the in-
ternal energy. The present paper is restricted to system
spherical molecules where the configurational potential
ergy, U( . . . ,r i , . . . ), is a function of the center-of-mas
coordinates,r i , only. The molecules with massesmi are as-
sumed to be located within a cubic cell where perio
boundary conditions are imposed. In the following, the ter
‘‘molecule’’ and ‘‘sphere’’ are used synonymously.

NPH ensemble simulations are typically based on
Andersen method@21# in which the system is characterize
by the scaled coordinates

qi5V21/3r i ~2.1!

and the volumeV is an additional variable. By definition, th
scaled coordinatesqi are located within the unit cube. Th
Andersen’s Lagrangian is defined as

L5
V2/3

2 (
i 51

N

mi q̇i•q̇i2U~ . . . ,V1/3qi , . . . !1 1
2 MV̇22PEV,

~2.2!

whereM is a system parameter, which influences the dyna
ics of the volume change. The Lagrangian equations of m
tion are then given by

mi q̈i52V22/3
“qi

U22mi q̇i

V̇

3V
, ~2.3!

MV̈5
1

3V1/3 (
i

mi q̇i
22

]U

]V
2PE . ~2.4!

In their article, de Smedtet al. @22# describe how to adapt th
Andersen algorithm to an-dimensional system of har
spheres. For convenience, we present the essential ste
their derivation for the three-dimensional case. Although
Sec. IV only one-component systems are considered,
more general case of a hard sphere mixture with individ
massesmi and diameterss i is assumed.

B. Collision of hard spheres in theNPH ensemble

In a hard sphere system, the pair interaction potentia
moleculesi and j having a distancer is given by

u~r !5H `, r ,s

0, r>s,
~2.5!

wheres5 1
2 (s i1s j ). The dynamics of a hard sphere syste

at constant volume consists of time intervals of force-f
motion interrupted by instantaneous two-molecule collisio
06110
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The collision behavior in theNPH ensemble can be ana
lyzed by defining a soft interaction potential

ue~r !5H s2r

e
, r ,s

0, r>s,

~2.6!

which becomes the hard sphere interaction potential in
limit e→0. Using vectorsQ5(mjqj1miqi)/(mi1mj ) and
qªqj2qi in analogy to center-of-mass vector and distan
vector and introducing spherical coordinates (q,q,w) for the
vectorq, the LagrangianL2 for two molecules can be written
as

L25
mi1mj

2
V2/3Q̇21

m

2
V2/3@ q̇21q2q̇21q2~sin2!qẇ2!]

2ue~V1/3q!1
M

2
V̇22PEV, ~2.7!

wherem5(mimj )/(mi1mj ) is the reduced mass. For finit
e, the collision takes place in the time interval (0,td) in
which the distance between the moleculesr 5V1/3q is less
than s. During the collision, the equations of motion forq
andV are given by

q̈5qq̇21q~sin2q!ẇ222
V̇

3V
q̇1

1

mV1/3e
~2.8!

and

V̈5
mi1mj

3MV1/3
Q̇21

m

3MV1/3
@ q̇21q2q̇21q2~sin2!qẇ2#

1
q

3MV2/3e
2PE . ~2.9!

As e→0, the potential approaches the hard sphere limit a
so the acceleration on the left-hand side of Eq.~2.8! di-
verges. The variablesq, w, q, and V will remain finite as
well as their derivativesq̇, ẇ, q̇, and V̇. Thus, while the
left-hand side goes to infinity fore→0, on the right-hand
side the only term that increases unboundedly is (mV1/3e)21.
For this reason, the other terms may be neglected for s
ciently smalle and Eq.~2.8! becomes

eq̈5
1

mV1/3
~2.10!

while with an analogous argument Eq.~2.9! becomes

eV̈5
q

3MV2/3
. ~2.11!

The remaining variables are unaffected by the hard sph
collision process. We consider a collision starting att50.
For a small enoughe, the duration of the collision become
6-2
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so small that during the collisionq(t) and V(t) are accu-
rately described by a Taylor expansion int:

q~ t !'q~0!1q̇~0!t1
t2

2mV1/3~0!e
, ~2.12!

V~ t !'V~0!1V̇~0!t1
st2

6MV~0!e
. ~2.13!

The collision duration is determined by the interval betwe
the timest50 andt5td.0 at whichr 5V1/3q5s:

V1/3~ td!q~ td!5s5V1/3~0!q~0!. ~2.14!

While the collision duration goes to zero fore→0, the value
t̄ d5td /e remains finite. Equations~2.12! and ~2.13! can be
rewritten as

q~ t !'q~0!1eH q̇~0! t̄ 1
t̄ 2

2mV1/3~0!
J , ~2.15!

V~ t !'V~0!1eH V̇~0! t̄ 1
s t̄ 2

6MV~0!
J . ~2.16!

For small e we may neglect all terms of the ordere2 and
higher so that combining Eqs.~2.14!–~2.16! gives

05V~ td!q3~ td!2V~0!q3~0!

'e t̄ dH @q3~0!V̇~0!13V~0!q2~0!q̇~0!#

1Fq3~0!
s

6MV~0!
1

3V~0!q2~0!

2mV1/3~0!
G t̄ dJ . ~2.17!

The curly bracket becomes zero if

t̄ d52

2mFV1/3~0!q̇~0!1s
V̇~0!

3V~0!
G

11
ms2

9MV2~0!

. ~2.18!

For e→0, it follows from Eqs.~2.15! and~2.16! thatV andq
remain unchanged during a hard sphere collision while th
derivatives change discontinuously as expected:

q̇~ td!5q̇~0!1
t̄ d

mV1/3~0!
, ~2.19!

V̇~ td!5V̇~0!1
s t̄ d

3MV~0!
. ~2.20!

Finally, one has

Dq̇j5
t̄ d

mjs
q, Dq̇i52

t̄ d

mis
q, ~2.21!
06110
n
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DV̇5
s t̄ d

3MV
, ~2.22!

t̄ d52

2mFV1/3q̇b1s
V̇b

3V
G

11
ms2

9MV2

, ~2.23!

q̇b5s21V1/3~ q̇j
b2q̇i

b!•q, ~2.24!

where q̇i
b , q̇j

b , and V̇b are the respective values before t
collision andq5qj2qi .

C. Motion between collisions

Between collisions, the path of the molecules and
change of the volume are given by the set of 3N11 differ-
ential equations:

mi q̈i522mi q̇i

V̇

3V
~ i 51, . . . ,N!, ~2.25!

MV̈5
1

3V1/3 (
i

mi q̇i
22PE . ~2.26!

Multiplying Eq. ~2.25! with q̇i and summing over alli gives

ẋ52
4

3
x

V̇

V
, ~2.27!

where

x5(
i

mi

2
q̇i

2 ~2.28!

is related to the molecules’ kinetic energy,Kmol , by Kmol
5V2/3x. Note that for the total kinetic energy,K, the contri-
bution from the volume dynamics must be added,K5Kmol

1MV̇2/2. The solution of Eq.~2.27! is

x~ t !5CV24/3~ t !

with Cªx~ t0!V4/3~ t0!5Kmol~ t0!V2/3~ t0!. ~2.29!

Thus, in theNPH ensemble, the hard spheres’ kinetic ener
Kmol(t) is generally not a constant between two collision
Instead we find that

Kmol~ t !

Kmol~ t0!
5S V~ t !

V~ t0! D
22/3

. ~2.30!

Substituting Eq.~2.29! into Eq. ~2.26! gives

V̈~ t !5
2C

3M
V25/3~ t !2

PE

M
. ~2.31!

As expected, the equation of state for the ideal gas
6-3
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2
3 K5PEV ~2.32!

is a solution of Eq.~2.31! in the special case ofV̇50. In the
next section, we describe some aspects of the impleme
tion, especially the dynamics between collisions. The
algorithm is given in Appendix A.

III. IMPLEMENTATION

The equations of motion for the hard spheres depend
the dynamics of the volume, which is determined by E
~2.31!. Equation~2.31! can be transformed into a first-orde
differential equation. In this way, an integral expression
the inverse functiont(V1/3) can be found that solves Eq
~2.31!. The integral cannot, however, be solved analytica
Nevertheless, a numerical integration of Eq.~2.31! itself is
quite convenient, particularly for the purpose of estimat
the collision times.

A. Integration method for small time steps

For small time steps,t̃ 5t2t0, Eq. ~2.31! can be solved
numerically by a method similar to the Velocity-Verlet alg
rithm @19#,

V~ t !'V~ t0!1V̇~ t0! t̃ 1 1
2 V̈~ t0! t̃ 2,

~3.1!
V̇~ t !'V̇~ t0!1 1

2 t̃ @V̈~ t0!1V̈~ t !#.

The second derivative ofV is given by Eq.~2.31!. Defining
V05V(t0), V15V(t), V̇05V̇(t0), andV̇15V̇(t), we obtain

V15V01V̇0 t̃ 1~zV0
25/32h! t̃ 2,

~3.2!
V̇15V̇01@~zV0

25/32h!1~zV1
25/32h!# t̃ ,

wherez5C/3M andh5PE/2M . From Eq.~2.25!, one has

q̇i~ t !5kiV
22/3~ t !, with ki5q̇i~ t0!V2/3~ t0!. ~3.3!

For small t̃ , the scaled coordinatesqi
15qi(t) and their time

derivativesq̇i
15q̇i(t) are given by

qi
1'qi

01q̇i
0 t̃ 1 1

2 q̈i~ t0! t̃ 25qi
01q̇i

0 t̃ 2q̇i
0 V̇0

3V0
t̃ 2,

q̇i
15V1

22/3ki , ~3.4!

ki5V0
2/3q̇i

0 ,

whereqi
05qi(t0) and q̇i

05q̇i(t0).

B. Estimating the next collision time

The next step is to develop a method to calculate the t
when the next hard sphere collision will occur. With th
knowledge and using the equations from Sec. IV B, the s
tem can be propagated up to that time. The collision ti
must be calculated for every pair of molecules, which
06110
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close enough to be a candidate for the next collision. A p
of molecules is considered a candidate for a collision ifr is
less than some suitably chosen value, the choice of whic
discussed below. The earliest of the obtained collision tim
$tc%, is the time of the next collision. The condition for
collision between moleculesi and j is

V2/3~ tc!uqi j u2~ tc!5s2 ~3.5!

with qi j 5qj2qi . Using the notations

q0
25uqi j ~ t0!u2, q̇0

25uq̇i j ~ t0!u2, qi
05qi~ t0!,

J0ª
V̇0

3V0
, s0ª2@qi j ~ t0!•q̇i j ~ t0!#, t̂ªt2t0 , ~3.6!

one obtains

uqi j u2~ t !'q0
21s0~ t̂2J0 t̂2!1q̇0

2~ t̂2J0 t̂2!2. ~3.7!

For small time differencest̂ , a Taylor expansion of
V2/3(t)uqi j u2(t) results in

V2/3~ t !uqi j u2~ t !

'V2/3~ t0!uqi j u2~ t0!1
d

dt
@V2/3uqi j u2# t0

t̂

1
1

2

d2

dt2
@V2/3uqi j u2# t0

t̂2

5V0
2/3H q0

21~2J0q0
21s0! t̂1F2

3
V0

21q0
2~zV0

25/32h!

2J0
2q0

21J0s01q̇0
2G t̂2J

5s2 for t5tc . ~3.8!

Rearranging this gives the quadratic equation

u t̂c
21v t̂ c1w50, ~3.9!

where

u5F2

3
V0

21q0
2~zV0

25/32h!2J0
2q0

21J0s01q̇0
2G , ~3.10!

v5~2J0q0
21s0!, ~3.11!

and

w5q0
22

s2

V0
2/3

. ~3.12!

It follows that if (v2/4u2)2(w/u).0, then moleculesi and
j collide at

t̂ c5tc2t052
v

2u
6A v2

4u2
2

w

u
. ~3.13!
6-4
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Taking the negative sign with the square root gives
smallest value fort̂ c in each case. In molecular dynamic
simulations in theNVE ensemble, possible colliders a
characterized byr i j • ṙ i j ,0; for them, both values oft̂ c are
positive and the smallert̂ c is always the correct collision
time if the collision is not hindered by third molecules. In th
NPH ensemble, the time dependence of the volume m
lead to configurations where Eq.~3.13! has both negative an
positive solutions, in which case the latter determines
relevant future collision time. Thus the collision time is th
smallest positive solution of Eq.~3.13! if any positive solu-
tion exists. This strategy presumes that the molecules
question are not overlapping. Therefore, small overlaps
to numerical inaccuracy must be carefully corrected.
avoid systematic drifts in the enthalpy, one consequently
tifies any deviations from the contact distance for the ac
ally colliding spheres. If the deviations are small enough
is sufficient to rectify the colliders’ positions only.

IV. SOME TESTS OF THE ALGORITHM

We have tested the algorithm described above for o
component hard sphere systems in theNPH ensemble and
compared the results with simulations performed in theNVE
ensemble.

A. Simulation details

Test runs were performed in a cubic simulation box w
periodic boundary conditions. At the beginning, the sphe
were located on the sites of an fcc lattice. While the diame
of the spheres serves as a suitable unit of length, no co
sponding reference energy is provided by the hard sph
potential. For hard spheres in theNVE ensemble, the kinetic
energy and temperature are~arbitrary! constants since the
potential energy is zero for nonoverlapping configurations
the spheres. In theNPH ensemble, the temperatureT, deter-
mined by

3~N21!11

2
kT5(

i 51

N
mi

2
V2/3q̇i

21
M

2
V̇2, ~4.1!

is a fluctuating quantity. We have found it convenient to u
kT0 as the unit of energy withT0 being the initial tempera-
ture.

Usually the properties of hard sphere systems are plo
in terms of dimensionless density,r* 5rs35Ns3/V, and
the dimensionless ratio of pressure and tempera
(PE /kT)* 5PEs3/kT. However, whilers3 is constant in
theNVE ensemble, neitherrs3 nor PEs3/kT are constant in
the NPH ensemble whereV andT are fluctuating. Since in
the NPH ensemble the enthalpyH is constant, one has

H5E1PEV5
3N22

2
kT1PEV5const. ~4.2!

For largeN, H/NPE can be written as
06110
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H

NPE
5

3

2 S PE

kTD 21

1r21. ~4.3!

Equation~4.3! gives a relation between the fluctuating qua
tities PE /kT and r. In the (PE /kT,r) plane, the system
fluctuates along a hyperbolic curve that is determined by
constantH/(NPE) on the left-hand side of Eq.~4.3!. The
curves for differentH/(NPE) do not intersect. If we write
Eq. ~4.3! in the form

H

PE
2

3Nk

2PE
T5V, ~4.4!

then it follows that in theNPH ensemble of hard sphere
changes of the volume are proportional to changes of
temperature, i.e.,

DV52
3Nk

2PE
DT, ~4.5!

a decrease of the volume implying an increase of the te
perature and vice versa.

The hard sphere molecular dynamics simulations w
run for systems withN5864, 2048, and 10 976 spheres ov
a reduced time period oft* 51022103, including up to 108

collisions. The reduced timet* is defined by t*
5t/(sAm/kT0)

B. NPT ensemble simulations

It is an interesting question how the algorithm should
modified to performNPT simulations of hard spheres. Th
NPT ensemble has a number of advantages compared to
NPH ensemble. In experiments, typically the temperature
kept constant rather than the enthalpy so that anNPT simu-
lation may be more adequate to mimic the dynamics in
experiment. As mentioned in Sec. IV A, theNPH ensemble
for hard spheres also has some conceptual inconvenien
For hard sphere systems in theNPH ensemble, neitherrs3

nor PEs3/kT are constant since volume fluctuations are
companied by proportional fluctuations of the temperature
follows from Eq.~4.3! that there is a minimum density tha
can be encountered in a hard sphere dynamics in theNPH
ensemble for a given value ofH/NPE . This is given by

rmin5
NPE

H
. ~4.6!

This behavior is illustrated in Fig. 1, which shows the ha
sphere equation of state together with the curves obta
from Eq. ~4.3! for various values ofH/NPE . It follows that
the solid branch cannot be reached if the density of the in
configuration is chosen too low. For example, at the melt
point of the solid, for whichPEs3/kT'11.59 andrs3

'1.041, we have

H

NPE
'1.09s35

1

0.92
s3. ~4.7!
6-5
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Thus, neither the melting solid nor any solid state with
higher density can be reached from an initial fluid state w
a densityrs3,0.92 using the dynamics of theNPH en-
semble. Generally, crystallization processes have to s
from fluid states with sufficiently high densities and typica
rather high values forPEs3/kT. These problems disappea
in theNPT ensemble wherePEs3/kT is constant. To obtain
hard sphere dynamics in this ensemble, we could, in p
ciple, start with the Lagrangian equations introduced
Nosé @25# and derive in a straightforward procedure t
equations of motion and the collision behavior. The expr
sions describing the collision behavior turn out to be ve
similar to those in theNPH ensemble. However, the equ
tions of motion between collisions are more complex th
those for theNPH case, and they would require a mo
accurate predictor corrector algorithm than the one we h
implement in theNPH case. This makes the estimate of t
next collision event distinctly more CPU time-consumin
Simulations with sufficiently extensive system sizes and lo
runs would not be practical. As an alternative to this,
have implemented a rescaling technique in which after e
propagation step the hard sphere velocities and the time
rivative of the volume are rescaled such that

const5kT5
2

3~N21!11 S (
i 51

N
mi

2
V2/3q̇i

21
M

2
V̇2D .

~4.8!

Since in theNPT ensemble the temperature is constant,kT
can be taken to define an energy reference unit. Altho
this procedure does not yield rigorousNPT molecular dy-
namics, we shall see that the results obtained for thermo
namics and transport properties are in good agreement
those obtained from rigorousNVE andNPH dynamics.

FIG. 1. Equation of state for hard spheres~solid line! in the fluid
phase~from the Carnahan-Starling equation@26#! and solid phase
~from the Hall equation@27#! together with plots from Eq.~4.3!
~dashed lines! for H/(NPEs3)5: ~a! 1.93; ~b! 1.62; ~c! 1.39; ~d!
1.22;~e! 1.09;~f! 0.98;~g! 0.89. The thick dashed parabolic line~e!
passes through the melting point.
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C. System dynamics

The maximum time step must be small enough to prod
tolerable errors in the estimation of the next collision tim
At the moment of collision, the distancer i j (tc) of colliding
spheresi and j should bes i j . For time steps smaller tha
t̃ max51024, the deviations were never larger than
31028s i j . For high densities the problem is less importa
since the estimated time stepst̃ c towards the next collision
are already so small that no intermediate step is required

There is no precise rule to choose the order of magnit
for the valueM which controls the dynamics of the volum
V. The choice ofM does not influence any equilibrium prop
erties but it has an impact on the dynamics. As a rule
thumb, Andersen@21# proposed that the time scale of th
volume fluctuation should be approximately the length of
sample divided by the speed of sound in the sample. F
cubic system with 2048 atoms, the fluctuation time sc
should be of the order of 0.121.0 in reduced units. Large
values ofM lead to slow, periodic volume oscillations, whil
a small value ofM results in fast irregular fluctuations ofV.
In the latter case, the dynamics of the volume is mai
driven by the molecular collisions rather than by the iner
of an artificial piston. The volume dynamics is dependent
the density of the system. However, for all densitiesrs3

>0.4 a value ofM* 51024 turns out to be reasonable i
terms of the mentioned criteria. If a simulation starts close
an equilibrium state point withV̇50, the system typically
undergoes one or two larger oscillations in density and te
perature until it rapidly approaches its longtime fluctuati
behavior~see Fig. 2!.

An important criterion for the accuracy ofNPH simula-
tions is the conservation of enthalpy. In our test simulatio
we found that the enthalpy never deviated more than 0.00
from its initial value over the course of the run.

D. Equilibrium properties

A number of test simulations were performed to check
accuracy of the system’s equilibrium properties. Resu

FIG. 2. Reduced densityrs3 as a function of reduced timet*
5tAkT0 /(ms2) at the beginning of anNPH simulation with
PEs3/kT054.0.
6-6
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were compared with accurate equations of state and co
sponding NVE ensemble results. Figure 3 shows t
equation-of-state data obtained. The lines in Fig. 3 co
spond to the Carnahan-Starling equation@26# in the fluid
region and the Hall@27# equation in the solid region, which
have been shown to give very accurate descriptions of
hard sphere equation of state. The agreement is very g
with deviations less than 0.2% for the density for all sta
considered. The same accuracy was obtained withNPT
simulations. The local fluid structure was considered
comparing pair distribution functions fromNPH, NPT, and
NVE simulations for various densities. Deviations alwa
lay within the range of the statistical errors. As an examp
the pair distribution functions obtained fromNVE simula-
tions of a hard sphere fluid with a densityrs350.9 and the
correspondingNPH ensemble simulation witĥr&s350.9
are shown in Fig. 4.

E. Transport properties

Due to the modified dynamics in constant pressure sim
lations, transport properties are of special interest. We h
calculated the mean-square displacement and the velocity
tocorrelation functions for several fluid states. As an e
ample, Fig. 5 shows the velocity autocorrelation functions
systems withrs350.9 and ^r&s350.9 in the NVE and
NPH ensemble, respectively. The deviation is smaller th
the statistical fluctuations. A corresponding comparison
tween NPT and NVE ensemble results is made in Fig.
Since the rescaling method does not yield the rigorous
namics of theNPT ensemble, the good agreement betwe
NPT and NVE velocity autocorrelations is a reassuring i
dicator for the accuracy of the method. Diffusion coefficien
obtained fromNVE, NPH, andNPT ensemble simulations

FIG. 3. Equation of state for hard spheres in the fluid and s
phases.NPH simulation results (L) of the average reduced pre
sure over temperaturê(PE /kT)&s3 as a function of the averag
reduced densitŷr&s3 are shown. The values are obtained fro
independent runs with different pressure parameter values.
solid lines represent the Carnahan-Starling equation for the fl
phase forrs3,0.943 and the equation of state for hard sphere
solids proposed by Hall@27# for rs3.1.041.
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are shown in Fig. 6 together with original results from Alde
Gass, and Wainwright@5# ~Fig. 7!. For the NVE and the
NPT ensemble, the diffusion coefficient is given in reduc
form D* 5D/(sAkT/m). For theNPH ensemble,D* is de-
fined byD* 5D/(sAkT0 /m) and we started with a configu
ration on the equilibrium branch so that^T&5T0 within the
error range. The deviations between theD values from the
NVE, NPH, andNPT ensemble simulations are of the ord
of 1% or less and the differences are not systematic.

V. CONCLUSIONS

We have implemented molecular dynamics simulations
hard sphere systems in theNPH ensemble. A detailed de

d

he
id
c

FIG. 4. Pair distribution function fromNPH ~solid line! and
NVE (L) ensemble simulations.NPH simulation results are
shown for^(PE /kT)&s359.6715.NVE results refer to the corre
sponding state with the density ofrs350.9. Only a subset of the
NVE simulation values are drawn to leave theNPH curve visible.

FIG. 5. Velocity autocorrelation function̂v* (0)v* (t* )& ob-
tained fromNPH ~solid line! andNVE (L) ensemble simulations
NPH simulation results are shown for̂(PE /kT)&s359.6715.
NVE results refer to the corresponding state with the density
rs350.9. Only a subset of theNVE simulation values are drawn to
leave theNPH curve visible.
6-7
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scription of the algorithm as well as technical details we
presented. The algorithm described is based on the ada
tion of the Andersen@21# method to hard spheres propos
by de Smedt and co-workers@22#. A key feature of our
implementation is an efficient calculation of the dynam
between hard sphere collisions. Test comparisons with si
lations carried out in theNVE ensemble demonstrate th
accuracy of theNPH simulations. Test simulations were a
plied for the NPH ensemble algorithm and anNPT en-
semble algorithm~based on ad hoc rescaling of the velo
ties! over the whole density range of the fluid phase as w
as for the solid phase. Constant pressure simulations of
sphere systems should be quite useful for the study of
dynamics at high pressures. By a one-step increase of
external pressurePE , a quenching process can be mimicke
Up to now, quenches towards close-packed random sys
required the application of rather sophisticated methods
are rather far from the system behavior in an experime
setup. The constant pressure simulations will allow us
analyze the system’s immediate response on the quenc
process. This will be the subject of a future publication.
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APPENDIX A: ALGORITHM

~i! At a certain time stept0, the following values are as
sumed to be known:

~a! qi
0 ,q̇i

0 andki5q̇i
0V0

2/3 for all moleculesi.

FIG. 6. Velocity autocorrelation function̂v* (0)v* (t* )& ob-
tained fromNPT ~solid line! andNVE (L) ensemble simulations
NPT simulation results are shown for̂(PE /kT)&s359.6715.
NVE results refer to the corresponding state with the density
rs350.9. Only a subset of theNVE simulation values are drawn t
leave theNPT curve visible.
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~b! V0 , V̇0 , z5C/3M5(1/3M )V0
4/3( i(mi /2)(q̇i

0)2, h

5PE/2M , J05V̇0 /(3V0), A05(zV0
25/32h).

~ii ! Calculate the collision timetc for all reasonable pairs
of moleculesi and j:

u5F2

3
V0

21q0
2A02J0

2q0
21J0s01q̇0

2G ,
v52J0q0

21s0 ,

w5q0
22

s2

V0
2/3

,

tc5t02
v

2u
6A v2

4u2
2

w

u
.

The smallesttc.t0 is the next collision timetc
n . Neighbor

lists help to reduce the number of possible colliders. It w
found that a combination of a small radius neighbor sh
(r shell51.05s) and a segmentation of the simulation volum
into cells leads to the best performance.

~iii ! Determine the propagation time stept̃ 5t12t0 so that
it does not exceed the maximum time stept̃ max beyond
which the Taylor approximations become questionable: i
set t̃ 5min$tc

n2t0,t̃max%.

~iv! Propagate the system towardst15t01 t̃ :
~a! V15V01V̇0 t̃ 1A0 t̃ 2.
~b! Calculate V1

21, V1
22/3, A15(zV0

25/32h),J1

5V̇1 /(3V1).
~c! V̇15V̇01(A01A1) t̃ .

f

FIG. 7. The reduced diffusion coefficientD* 5DAm/kT0/s ob-
tained from the velocity autocorrelation function as a function
the reduced densityrs3. Results are shown from simulations o
Alder and Wainwright forN5108 (1) and for N5500 spheres
(L). The remaining results for theNPH (3), theNPT (n), and
the NVE (h) ensemble are obtained from simulations withN
5864 spheres.
6-8
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~d! qi
15qi

01q̇i
0( t̃ 2J0 t̃ 2).

~e! q̇i
15V1

22/3k i .
~v! If a collision occurs att1 between moleculesi and j

with m5(mimj )/(mi1mj ), then do the following.
~a! Calculate

q5qj2qi , Dq̇j5
t̄ d

mjs
q,

q̇b5s21V1/3~ q̇j
b2q̇i

b!•q, Dq̇i52
t̄ d

mis
q,

t̄ d52

2mFV1/3q̇b1s
V̇b

3V
G

11
ms2

9MV2

, DV̇5
s t̄ d

3MV
.

ys

an

e

06110
~b! With q̇i
a5q̇i

b1Dq̇i and q̇j
a5q̇j

b1Dq̇j being the time
derivatives of theqi ,qj before~b! and after~a! the collision,
calculate

Ca5Cb1V1
4/3Fmi

2
@~ q̇i

a!22~ q̇i
b!2#1

mj

2
@~ q̇j

a!22~ q̇j
b!2#G .

~c! Set za5Ca/3M , Aa5(zaV0
25/32h), and Ja

5V̇a /(3V1).

~d! k i5q̇i
aV1

2/3, k j5q̇j
aV1

2/3

~vi! Set the following:

~a! qi
05qi

1 , q̇i
05q̇i

a for all moleculesi.

~b! V05V1 , V̇05V̇a , z5za, J05Ja , A05Aa .
~vii ! Continue with step~ii !.
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