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Isobaric molecular dynamics simulations of hard sphere systems
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We describe an implementation of the Andersen algorithm for simulating the molecular dynamics in the
isobaric isoenthalpicN PH) ensemble for the hard sphere potential. The work is based on the adaptation of the
Andersen algorithm to hard spheres by de Snetdil. For a hard sphere system in tNlPH ensemble, the
particle velocities are not constant between collisions and we describe an efficient method for handling this part
of the dynamics. The method is extended to giveNdAT ensemble simulation of hard sphere systems by
applying anad hocrescaling of the velocities. The accuracy of the algorithms is tested by comparison with
traditional NV E simulation results for the structural, thermodynamic, and transport properties.
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I. INTRODUCTION system ofN molecules in a fluctuating volumé is exposed
to a constant pressuf® at a constant enthalpld. Corre-

Molecular dynamics(MD) simulations of hard sphere spondingNPH ensemble simulations for soft potentials are
systems were first performed in the 19%0% and since then typically based on a method originally introduced by Ander-
extensive simulation studies of this model have been persen[21]. MD simulation techniques for hard sphere systems
formed, most notably by Alder and co-workg¢@s-5]. These are computationally different from those for continuous
simulations have revealed many useful insights into the momodel potentials because of the nature of the hard sphere
lecular basis of thermodynamic and transport phenomena&ollisions. While for soft molecules the numerical integration
Dynamics in hard sphere systems continues to interest redf the trajectory is typically performed by time steps of pre-
searchers, with recent attention directed to dense packetetermined length, the propagation of hard sphere system
metastable fluid states and crystallization procef8es$]. simulations is event driven by the subsequential sphere col-

While being among the simplest interaction potentialslisions. For hard systems without external fields in M¢E
conceivable, the hard sphere potential provides a good agnsemble, Newton’s equations of motion can be integrated
proximation to phenomena in a large number of real materiwithout truncation error because the collision dynamics can
als. The comparison between hard sphere properties ardi evaluated analytically and the motion between collisions
those of systems with attractive as well as repulsive forcess force-free. Over the years, some efficiency improvements
shows which effects are already brought about by repulsivef the hard sphere MD method have been prop¢a8¢24,
interactions alone. This is especially the case for dense sysut generally it always consists of three fundamental steps:
tems where the repulsive part of the interaction potential hasstimation of collision times, propagation of the system to-
a strong influence on the configurational properties and dywards the next collision event, and calculation of the colli-
namics. Hard sphere system analysis revealed strong ewion’s impact on the system. If hard sphere simulations are
dence for the existence of a first-order transition from ancarried out in theNPH ensemble, the system’s volume is
ordered to a disordered phase simply from short-range reputonsidered as an additional dynamical variable and all three
sions[9-12). simulation steps must be reconsidered.

In recent work, dispersions of polymer coated colloidal In 1986, de Smedét al. [22] presented the analysis nec-
particles have been investigated in which the behavior is exessary to implement the Andersen algorithm for hard sphere
tremely similar to that of hard sphere systefi8—17. Such  systems inv dimensions together with some illustrative cal-
systems are not only exciting model systems for the analysisulations for the one-dimensional case. However, to the best
of crystallization processes, they are also of technologicabf our knowledge no implementation of their analysis for
interest, for example for the production of photonic crystalsthree-dimensional hard sphere systems has been reported up
[18]. The colloidal dispersions reproduce the hard spher¢éo now. Isobaric molecular dynamics is a potentially useful
equation of state and exhibit a pressure-induced restructuringpproach to studying the dynamics of hard sphere crystalli-
towards face-centered-culjiicc) order. Experimental inves- zation, so an implementation is of significant interest. In the
tigations of these systems with their larger number of parpresent paper, the necessary steps for an efficient implemen-
ticles and the longer observation times are an ideal compldation in three dimensions are presented together with illus-
ment to the simulation studies, which for their part allow atrative calculations. The accuracy of hard sphéfeH simu-
more detailed structure analysis. Comparison of the two is &tions is checked by comparison with results frowivE
fruitful way to develop new insights in hard sphere systemsimulations. We also study the accuracy of simulations in
behavior. which a simple velocity scaling is added to the algorithm to

Molecular dynamics simulations at constant pressure havenable isothermal, isobariN@ T), hard sphere simulations.
become a standard method for the computational investigdn Sec. Il, the derivation of the equations of motion for the
tion of soft potential model systenj49,20. One possible hard spheré PH ensemble is given. Section Il is dedicated
constant pressure scenario is tH®H ensemble, in which a to implementation details, while tests of the algorithm are
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reported in Sec. IV. In Sec. V, our conclusions are presentedihe collision behavior in th&NPH ensemble can be ana-
lyzed by defining a soft interaction potential
1. EQUATIONS OF MOTION FOR HARD SPHERES ;
o—
IN THE NPH ENSEMBLE . r<o
uf(r)=y € (2.6)
0, r=o,

A. Molecular dynamics in the NPH ensemble

In the NPH ensemble, a system df molecules in a fluc-
tuating volumeV, is exposed to a constant external pressurevhich becomes the hard sphere interaction potential in the
Pg at a constant enthalpyd =U + PV, whereU is the in-  |imit e—0. Using vectorsQ = (m;q;+m;q;)/(m;+m;) and
ternal energy. The present paper is restricted to systems @f:=q; —g; in analogy to center-of-mass vector and distance
spherical molecules where the configurational potential enyector and introducing spherical coordinatesd, ¢) for the

ergy, U(....ri,...), is afunction of the center-of-mass vectorq, the Lagrangiat., for two molecules can be written
coordinatesr;, only. The molecules with masses are as- gs

sumed to be located within a cubic cell where periodic

boundary conditions are imposed. In the following, the terms MM s M o s oo o >
“molecule” and “sphere” are used synonymously. Lo=——V Q +5V T0*+q* 9%+ g*(sin’) 9¢?)]

NPH ensemble simulations are typically based on the

Andersen methodi21] in which the system is characterized 13 M. 5
by the scaled coordinates ULV + S VI PeV, 2.7
.\
g =V, (2.1) where u = (mm;)/(m;+my;) is the reduced mass. For finite

€, the collision takes place in the time interval t(f), in
which the distance between the molecutesV?q is less
than o. During the collision, the equations of motion fqr
andV are given by

and the volumé/ is an additional variable. By definition, the
scaled coordinateg; are located within the unit cube. The
Andersen’s Lagrangian is defined as

V23 N o _ )
L=— igi-gi—U(... V¥, .. )+IMVZ-PpV, . PPN 2
7 2 A U )T ; q=q9*+q(sifd)?— 2500+ —- (29
(2.2 VT vt
whereM is a system parameter, which influences the dynamand
ics of the volume change. The Lagrangian equations of mo-
tion are then given by LoomEmy B o s o -
; V=i gyymeld Hat (sirf) 9¢°]
m; g = —V_2/3tiU—2miQi3—V. (2.3 q
+—3MV2/36_PE. (29)
o1 L, 0
MV= 313 Z miq; RV Pe. 24 as €—0, the potential approaches the hard sphere limit and

so the acceleration on the left-hand side of E2.8 di-

In their article, de Smedit al.[22] describe how to adapt the Verges. The variables, ¢, g, andV will remain finite as
Andersen algorithm to av-dimensional system of hard well as their derivativesd, ¢, g, andV. Thus, while the
spheres. For convenience, we present the essential stepsléfit-hand side goes to infinity foe—0, on the right-hand
their derivation for the three-dimensional case. Although inside the only term that increases unboundedlyi¥'{3¢) ~*.
Sec. IV only one-component systems are considered, thieor this reason, the other terms may be neglected for suffi-
more general case of a hard sphere mixture with individuatiently smalle and Eq.(2.8) becomes

massesn; and diametersr; is assumed.

. 1
B. Collision of hard spheres in theNPH ensemble €q= lels (2.10
In a hard sphere system, the pair interaction potential of .
molecules andj having a distance is given by while with an analogous argument E&.9) becomes
o= v a (2.10)
= 2. eV=——. .
u(r) 0. r=o, (2.9 3M V23

whereo = %(oi+o-j). The dynamics of a hard sphere systemThe remaining variables are unaffected by the hard sphere
at constant volume consists of time intervals of force-freecollision process. We consider a collision startingt &t0.
motion interrupted by instantaneous two-molecule collisionsFor a small enougle, the duration of the collision becomes
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so small that during the collisiog(t) and V(t) are accu-
rately described by a Taylor expansiontin

2

. t
q(t)~q(0)+q(0)t+ W

2

6MV(0)e’

(2.12

V(t)~V(0)+V(0)t+ (2.13

The collision duration is determined by the interval between

the timest=0 andt=t4>0 at whichr =V¥%q= ¢
(2.149

While the collision duration goes to zero fer-0, the value

t_d=td/e remains finite. Equation€.12) and(2.13 can be
rewritten as

V() a(ty) = o=V30)q(0).

12
q(t)%q(0)+e[q(0)t+m], (2.19
. ot?

For smalle we may neglect all terms of the ordef and
higher so that combining Eq§2.14—(2.16 gives

0=V(ty)g3(tg) — V(0)q3(0)

~et_d[ [93(0)V(0)+3V(0)g?(0)q(0)]

o 3V(0)g%0)]-
+| g0 + tgr. (2.1
The curly bracket becomes zero if
. V(0) |
1/3
B 2u|V (O)q(0)+U3V(0)_
td:_ > . (218)
o
1+ ———
9MV?(0)

For e—0, it follows from Eqs.(2.15 and(2.16) thatV andq
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AV= ota 22
. Vil
1/3b v

B 2ul VT +0'3V

ta= - Tt (2.23
no
IM V2

= V¥’ -a)-q, (2.24

whereq?, g, andV, are the respective values before the
collision andg=g;—q; .

C. Motion between collisions

Between collisions, the path of the molecules and the

change of the volume are given by the set df81 differ-
ential equations:

. Vv
miqi:_zmiqis_v (i=1,...N), (2.29
| .
MV= T Z mq?— Pg. (2.26

Multiplying Eq. (2.25 with g; and summing over all gives

.4V -
X=~3Xy (2.27)
where
m .
x=20 5 (2.28

is related to the molecules’ kinetic enerd¥ o1, by Kol
=V?3y. Note that for the total kinetic energi, the contri-
bution from the volume dynamics must be addEd; K,

+MV?/2. The solution of Eq(2.27) is
x(H=CV~*¥t)

with  Ci=x(to) V¥¥(to) =Kmol(to) VZ¥3(to). (2.29

remain unchanged during a hard sphere collision while their

derivatives change discontinuously as expected:

: : ty
ty)=09(0)+ ———, 2.1
At =0(0) + s (2.19
V(tg)=V(0)+ oty 22
(tg)) =V(0) 3MV(0)° (2.20
Finally, one has
Ag;= Lo Agi= Lo 2.2
qj—@q, of —@q, (2.2

Thus, in theNPH ensemble, the hard spheres’ kinetic energy
Kmo(t) is generally not a constant between two collisions.

Instead we find that

Kmol(t) _ V(t) B
Kmol(to) ( V(to)) (230
Substituting Eq(2.29 into Eq. (2.26) gives
.o 2C Pe
V(t)—mv 53(t)—V. (2.31)

As expected, the equation of state for the ideal gas
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ZK=PeV (2.32 close enough to be a candidate for the next collision. A pair
of molecules is considered a candidate for a collisionig
is a solution of Eq(2.31) in the special case 8f=0. In the  less than some suitably chosen value, the choice of which is
next section, we describe some aspects of the implementgliscussed below. The earliest of the obtained collision times,
tion, especially the dynamics between collisions. The full{tc}, is the time of the next collision. The condition for a
algorithm is given in Appendix A. collision between moleculdsandj is

213, 2 _ 2
ll. IMPLEMENTATION Vo) ay*(to) =0 (3.5

The equations of motion for the hard spheres depend oWith dij=0;—;. Using the notations

the dynamics of the volume, which is determined by Eqg. 2 5 o - 5 0

(2.31). Equation(2.31) can be transformed into a first-order do=laij(to)|*,  do=laij(to)|*, o =ai(to),
differential equation. In this way, an integral expression for
the inverse functiort(V¥3) can be found that solves Eq.
(2.31). The integral cannot, however, be solved analytically.
Nevertheless, a numerical integration of Eg.31) itself is _
quite convenient, particularly for the purpose of estimatingone obtains

the collision times. n n o o
|aij| 2 ~ a5+ so(t—Jot?) +a5(t—JotH2. (3.7

v . i
Jo=gyr So=2di(t)-Gi(to)], T=t-to, 36

A. Integration method for small time steps . . ~ .
For small time differencest, a Taylor expansion of

For small time stepst=t—t,, Eq. (2.3) can be solved V2(t)|q;|2(t) results in
numerically by a method similar to the Velocity-Verlet algo-

rithm [19], V23(t)[q;;|%(t)
e T LN T d R
V(D) =V(to) + V(to) T+ V(1) ~V28(t0) gy (1) + [V 2}
: : — . (3.9
V()= V(to) + [ V(to) + V(D)]. i
V2/3|q |2] t2
The second derivative df is given by Eq.(2.31). Defining 2 dt el it

Vo=V(to), V1=V(1), Vo=V(t,), andV;=V(t), we obtain

~ |2 _
Vy=Vo+ Vgt + £V 58— 7)T2 = V5% a3+ (2005 +s0) T+ 3 Vo 'q5(¢Vo = m)
. 5 (3.2 L
V1=Vo+ [(&V **= m)+(¢V = )]k, — 505+ Joso + A t2]
where/=C/3M and »=Pg/2M. From Eq.(2.29, one has =g for t=t,. (3.9

Gi(h=rV 2(t), with Kk=0i(to)V*(to). (3.3  Rearranging this gives the quadratic equation

For smalit, the scaled coordinateg = qg;(t) and their time ut?+ovt,+w=0, (3.9
derivativesq!=q;(t) are given by
where
.1% 0 . 2: _~2 2 - - .
qi~q; +q| 2q (to)t q| +q| ql 3V0t ) u= §V0 lqg(gvo 5/3_ n)—ngg-FJOSO-F qg , (3.10
qi=V; Py, (3.4 v=(2Jy93+5Sy), (3.11
VS’ q| , and
whereq’=q;(to) andqg’=q;(te) a?
i =di(to ai =di(to). w=gi— — (3.12

Vg/s'
B. Estimating the next collision time b o
. . >

The next step is to develop a method to calculate the tlm‘lftggllll%v;/saihat it (v*/4u7) = (w/u)>0, then molecule and
when the next hard sphere collision will occur. With this
knowledge and using the equations from Sec. IV B, the sys- D)
tem can be propagated up to that time. The collision time fo=te—to=——* \/—— —. (3.13
must be calculated for every pair of molecules, which are 2u 4u?
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Taking the negative sign with the square root gives the H

smallest value fort, in each case. In molecular dynamics NP:
simulations in theNVE ensemble, possible colliders are

characterized byij~hj<0; for them, both values offC are  Equation(4.3 gives a relation between the fluctuating quan-
positive and the smallet, is always the correct collision tities Pe/kT and p. In the (Pe/kT,p) plane, the system
time if the collision is not hindered by third molecules. In the fluctuates along a hyperbolic curve that is determined by the
NPH ensemble, the time dependence of the volume magonstantH/(NPg) on the left-hand side of Eq4.3). The
lead to configurations where E@.13 has both negative and curves for differentH/(NPg) do not intersect. If we write
positive solutions, in which case the latter determines thd=d- (4.3) in the form

relevant future collision time. Thus the collision time is the

smallest positive solution of E¢3.13 if any positive solu- H NT—V
tion exists. This strategy presumes that the molecules in Pe 2Pg '
guestion are not overlapping. Therefore, small overlaps due

to numerical inaccuracy must be carefully corrected. Tathen it follows that in theNPH ensemble of hard spheres,
avoid systematic drifts in the enthalpy, one consequently recechanges of the volume are proportional to changes of the
tifies any deviations from the contact distance for the actutemperature, i.e.,

ally colliding spheres. If the deviations are small enough, it

is sufficient to rectify the colliders’ positions only. 3Nk

AV=— Z—PEAT, (45)

-1
E) +p L 4.3

(4.9

IV. SOME TESTS OF THE ALGORITHM ) ] )
_ ) a decrease of the volume implying an increase of the tem-
We have tested the algorithm described above for oneperature and vice versa.
component hard sphere systems in MEH ensemble and ~ The hard sphere molecular dynamics simulations were
compared the results with simulations performed inKRéE  run for systems withN=864, 2048, and 10 976 spheres over

ensemble. a reduced time period df =10°— 10®, including up to 18
collisions. The reduced timet* is defined by t*
A. Simulation details =t/(oVm/kT))

Test runs were performed in a cubic simulation box with
periodic boundary conditions. At the beginning, the spheres
were located on the sites of an fcc lattice. While the diameter It is an interesting question how the algorithm should be
of the spheres serves as a suitable unit of length, no correnodified to performNPT simulations of hard spheres. The
sponding reference energy is provided by the hard sphemPT ensemble has a number of advantages compared to the
potential. For hard spheres in theV E ensemble, the kinetic  NPH ensemble. In experiments, typically the temperature is
energy and temperature afarbitrary) constants since the kept constant rather than the enthalpy so thalN&il simu-
potential energy is zero for nonoverlapping configurations ofation may be more adequate to mimic the dynamics in the
the spheres. In thhPH ensemble, the temperatufedeter-  experiment. As mentioned in Sec. IV A, thPH ensemble

B. NPT ensemble simulations

mined by for hard spheres also has some conceptual inconveniences:
N For hard sphere systems in tNe®H ensemble, neithgso?
3(N-1)+1 kT=S ﬂvz/s' 2, M\'/z (43 hor Peo®/KkT are constant since volume fluctuations are ac-
2 <12 i ' ' companied by proportional fluctuations of the temperature. It

follows from Eq. (4.3 that there is a minimum density that

is a fluctuating quantity. We have found it convenient to uses@n be encounte.red in a hard sphere d_yngmg:s INtRéd
kT, as the unit of energy witf, being the initial tempera- €"Semble for a given value &f/NPe. This is given by
ture. NP,
Usually the properties of hard sphere systems are plotted Prmin=——
in terms of dimensionless density* =pa=No>/V, and H

the dimensionless ratio of pressure and temperatureh, havior is il N hich sh he h
(Pe/KT)* =Pea’/kT. However, whilepo® is constant in | NI behavior is illustrated in Fig. 1, which shows the hard

theNVE ensemble, neithgra® nor Peo®/kT are constant in sphere equation of state together with the curves obtained

the NPH ensemble wher® andT are fluctuating. Since in fLom El?j E)A"S) fﬂr Variousbvalueshof(;l{fl\lklj’Ealt fO.HOWfS ;ha.t itial
the NPH ensemble the enthal@y is constant, one has the Solid branc cannot be reached if the density of the |n|'t|a
configuration is chosen too low. For example, at the melting

point of the solid, for whichPgo®/kT~11.59 andpo*

(4.6)

3N—-2 ~
H=E+PV=———KkT+PeV=const. (42 ~ 104 wehave
i 1.093= L, 4
For largeN, H/NPg can be written as NPg o 0927 - “.7
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FIG. 1. Equation of state for hard sphefsslid line) in the fluid FIG. 2. Reduced densityo® as a function of reduced tim

phase(from the Carnahan-Starling equatif®6]) and solid phase =t\kTo/(mo?) at the beginning of arNPH simulation with
(from the Hall equatior[27]3) together with plots from Eq(4.3 Pec®kTy=4.0.
dashed linesfor H/(NPgo®)=: (a) 1.93; (b) 1.62;(c) 1.39;(d .
(1.22;(e) 1.09)?(1‘) O.Qé;(g)EO.S)Q. Trge)thick d(aghed pz;rz)ibolic Iiéte; C. System dynamics
passes through the melting point. The maximum time step must be small enough to produce
tolerable errors in the estimation of the next collision time.
Thus, neither the melting solid nor any solid state with aAt the moment of collision, the distaneg (t.) of colliding
higher density can be reached from an initial fluid state withSPheres andj should beo; . For time steps smaller than
a densitypo3<0.92 using the dynamics of thdPH en-  tma=10"%, the deviations were never larger than 2
semble. Generally, crystallization processes have to sta 10 °cj;. For high densities the problem is less important
from fluid states with sufficiently high densities and typically since the estimated time stepstowards the next collision
rather high values foPzo®/kT. These problems disappear are already so small that no intermediate step is required.
in the NPT ensemble wher®co3/kT is constant. To obtain ~ There is no precise rule to choose the order of magnitude
hard sphere dynamics in this ensemble, we could, in prinfor the valueM which controls the dynamics of the volume
ciple, start with the Lagrangian equations introduced byV- The choice oM does not influence any equilibrium prop-
Nose [25] and derive in a straightforward procedure the€rties but it has an impact on the dynamics. As a rule of
equations of motion and the collision behavior. The expresthumb, Anderserj21] proposed that the time scale of the
sions describing the collision behavior turn out to be veryvolume fluctuation should be approximately the length of the
similar to those in th&lPH ensemble. However, the equa- S2MPle divided by the speed of sound in the sample. For a
tions of motion between collisions are more complex thangﬁgfl ds;gséteorp txv;tzrﬁgfifa(tﬁﬂsé EEer;:jufézgt'ggitgmfaécsle
accurate procictor conrector algortm han the ane we havgelUes oM ead o slow, periodic volume oscilatons, whie
implement in theNPH case. This makes the estimate of the 9

lisi distinet . .ZIn the latter case, the dynamics of the volume is mainly
next collision event distinctly more CPU time-consuming. yrjyen py the molecular collisions rather than by the inertia
Simulations with sufficiently extensive system sizes and long¢ an arfificial piston. The volume dynamics is dependent on
runs would not be practical. As an alternative to this, wegne density of the system. However, for all densitjas®
have implemented a rescaling technique in which after each-0 4 3 value ofM* =104 turns out to be reasonable in
propagation step the hard sphere velocities and the time desrms of the mentioned criteria. If a simulation starts close to
rivative of the volume are rescaled such that an equilibrium state point with/=0, the system typically

N undergoes one or two larger oscillations in density and tem-
2 m; ., M. perature until it rapidly approaches its longtime fluctuating
_ 232 2
const=kT= AN-D+1 i; 7V ai + 7\/ : behavior(see Fig. 2.
(4.8) An important criterion for the accuracy &fPH simula-

tions is the conservation of enthalpy. In our test simulations,
Since in theNPT ensemble the temperature is const&t, we fo_unq t_h_at the enthalpy never deviated more than 0.005%
can be taken to define an energy reference unit. AIthougF]rom its initial value over the course of the run.
this procedure does not yield rigorods® T molecular dy- . _
namics, we shall see that the results obtained for thermody- D. Equilibrium properties
namics and transport properties are in good agreement with A number of test simulations were performed to check the
those obtained from rigorou$VE andNPH dynamics. accuracy of the system’s equilibrium properties. Results
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FIG. 3. Equation of state for hard spheres in the fluid and solid FIG. 4. Pair distribution function frorNPH (solid line) and
phasesNPH simulation results ¢ ) of the average reduced pres- NVE (&) ensemble simulationsNPH simulation results are
sure over temperaturgPe/kT))o® as a function of the average shown for((Pg/kT))o®=9.6715.NVE results refer to the corre-
reduced densityp)o® are shown. The values are obtained from sponding state with the density pir°=0.9. Only a subset of the
independent runs with different pressure parameter values. Th¥VE simulation values are drawn to leave tN&H curve visible.
solid lines represent the Carnahan-Starling equation for the fluid

phase forpo<0.943 and the equation of state for hard sphere foc?€ shown in Fig. 6 together with original results from Alder,

: 3 Gass, and Wainwright5] (Fig. 7). For the NVE and the
solids proposed by Hall27] for po=>1.041. NPT ensemble, thegdiffusiongcoefficient is given in reduced
were compared with accurate equations of state and corrderm D* =D/(okT/m). For theNPH ensembleD* is de-
sponding NVE ensemble results. Figure 3 shows thefined byD* =D/(oVkTy/m) and we started with a configu-
equation-of-state data obtained. The lines in Fig. 3 correration on the equilibrium branch so th@)=T, within the
spond to the Carnahan-Starling equati@®] in the fluid  error range. The deviations between tevalues from the
region and the Hal[27] equation in the solid region, which NVE, NPH, andNPT ensemble simulations are of the order
have been shown to give very accurate descriptions of thef 1% or less and the differences are not systematic.
hard sphere equation of state. The agreement is very good
with deviations less than 0.2% for the density for all states V. CONCLUSIONS
considered. The same accuracy was obtained WM®T We have implemented molecular dynamics simulations of
simulations. The local fluid structure was considered byhard sphere systems in tiPH ensemble. A detailed de-
comparing pair distribution functions froddPH, NPT, and
NVE simulations for various densities. Deviations always
lay within the range of the statistical errors. As an example,
the pair distribution functions obtained frodMVE simula-
tions of a hard sphere fluid with a densjiy>=0.9 and the 0.05 |
correspondingPH ensemble simulation witkip)o>=0.9
are shown in Fig. 4.

0.1

£ o

E. Transport properties

(v OV ()
1

Due to the modified dynamics in constant pressure simu-
lations, transport properties are of special interest. We have
calculated the mean-square displacement and the velocity a.
tocorrelation functions for several fluid states. As an ex-
ample, Fig. 5 shows the velocity autocorrelation functions of
systems withpo®=0.9 and(p)a=0.9 in the NVE and 01
NPH ensemble, respectively. The deviation is smaller than
the statistical fluctuations. A corresponding comparison be-
tween NPT and NVE ensemble results is made in Fig. 6. g1, 5. velocity autocorrelation functiofiv* (0)v* (t*)) ob-
Since the rescaling method does not yield the rigorous dyrained fromNPH (solid line) andNVE (¢ ) ensemble simulations.
namics of theNPT ensemble, the good agreement betweenNpH simulation results are shown fof(Pg/kT))o3=9.6715.
NPT andNVE velocity autocorrelations is a reassuring in- NVE results refer to the corresponding state with the density of
dicator for the accuracy of the method. Diffusion coefficientsps®=0.9. Only a subset of thidV E simulation values are drawn to
obtained fromNVE, NPH, andNPT ensemble simulations leave theNPH curve visible.

0.5 1 15 2 25 3
t*
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FIG. 6. Velocity autocorrelation functiofu* (0)v* (t*)) ob- FIG. 7. The reduced diffusion coefficiebt* =D \m/k T,/ o ob-

tained f.romlNPT(solidlline) andl\FIIVE(?) ens/ekmble 3Si_mUIati°nS' tained from the velocity autocorrelation function as a function of
NPT S'mlf at|0|: resu LS are shown of(Pe T»;" ;9'6715_' fthe reduced densitpo®. Results are shown from simulations of
NV3E_ results refer to the correspopdlng _state with the density ofalder and Wainwright forN=108 (+) and for N=500 spheres
pa®=0.9.Only a subs_et_ of thdVVE simulation values are drawn to (). The remaining results for thePH (), the NPT (A), and
leave theNPT curve visible. the NVE (O) ensemble are obtained from simulations with

o . ) ) =864 spheres.
scription of the algorithm as well as technical details were

presented. The algorithm described is based on the adapta- . _ _ 413 Oy 2

tion of the Anderseri21] method to hard spheres proposed (b) Vo, Vo, {=C/3M _(1/3M);{g Zi(mif2) (@)% 7
by de Smedt and co-workef®2]. A key feature of our =PE/2M, Jo=Vo/(3V0), Ag=({Vo ™ = 7). _
implementation is an efficient calculation of the dynamics (i) Calculate the collision time, for all reasonable pairs
between hard sphere collisions. Test comparisons with simif molecules andj:

lations carried out in theNVE ensemble demonstrate the

accuracy of thé\ PH simulations. Te_st simulations were ap- U= EvalqéAo—JéqéﬂosomS '
plied for the NPH ensemble algorithm and aNPT en- 3

semble algorithmbased on ad hoc rescaling of the veloci-

ties) over the whole density range of the fluid phase as well v:230q3+ Sy,

as for the solid phase. Constant pressure simulations of hard

sphere systems should be quite useful for the study of the o2

dynamics at high pressures. By a one-step increase of the W=05— 7

external pressurBg, a quenching process can be mimicked. Vo

Up to now, quenches towards close-packed random systems

required the application of rather sophisticated methods that v v w
are rather far from the system behavior in an experimental te=to— Zi F_ u
setup. The constant pressure simulations will allow us to u
analyze the system’s immediate response on the quenchi

. T
process. This will be the subject of a future publication. Fhe smallest,>t, is the next collision timetc. Neighbor

lists help to reduce the number of possible colliders. It was
found that a combination of a small radius neighbor shell

ACKNOWLEDGMENTS (r shei= 1.050) and a segmentation of the simulation volume
This work was supported by a grant from the U.S. Depart—'mo___ce"S Iead; to the best per.forrr?ance;
ment of Energy(Contract No. DE-FG02-90ER14150The (iii) Determine the propagation time stept; —to so that

authors are grateful to Professor Julian Talbot for providingt does not exceed the maximum time steg., beyond
us with a detailed explanation of the analysis presented in th&hich the Taylor approximations become questionable: i.e.,

paper by de Smedit al. [22]. sett=min{t?—ty, tmad- ~
(iv) Propagate the system towarids=ty+t:
APPENDIX A: ALGORITHM (@) V,=Vo+ Vo’f_i_pio’lfz. " »
(i) At a certain time stef, the following values are as- (b)) Caleulate Vi=%, V7%, Aj=({Vo ™= 7),d1
sumed to be known: =V/(3Vy).
(@ q,q° and k;=q°V3" for all molecules. (©) Vi=Vo+ (Ag+Ay)t.
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(d) g =af+aP(t—Jot?).

(®) g =V; ;.

(v) If a collision occurs at; between moleculesand]j
with = (mym;)/(m;+m;), then do the following.

(a) Calculate

Lty
a=0;—q, qu'—aq,
~b_ —lvl/3'b_'b A'__t__d
Q=0 (a7 —a7)-q, 4=~ o
\'/b

1/3; _ —
_ MV o3y o ot
td__ = ’ T 3MV°

1+

aMV?2

PHYSICAL REVIEW E 63 061106

(b) With g?=g+Aq; and g= g+ Ag; being the time
derivatives of theg; ,q; before(b) and after(a) the collision,
calculate

ca=cbrv43 S (@2 (@) + j[(d? 2— ().

() Set (2=C?¥3M, =(LVo 22— 17), and J,
=V /(3v1)

(d) V%B, qJ V2/3

(vi) Set the foIIowmg

@ q’=q}, q°=q?® for all molecules.

(0) Vo=V1, Vo=Va, (=3 Jo=Ja, Ap=A,.
(vii) Continue with steii).
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